numerical study of operating pressure effect on carbon nanotube growth rate and length uniformity

نویسندگان

b. zahed

t. fanaei s.

a. behzadmehr

h. ateshi

چکیده

chemical vapor deposition (cvd) is one of the most popular methods for producing carbon nanotubes (cnts). the growth rate of cnts based on cvd technique is investigated by using a numerical model based on finite volume method. inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal cvd reactor at atmospheric pressure. in this article the operating pressure variations are studied as the effective parameter on cnt growth rate and length uniformity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Operating Pressure Effect on Carbon Nanotube Growth Rate and Length Uniformity

Chemical Vapor Deposition (CVD) is one of the most popular methods for producing Carbon Nanotubes (CNTs). The growth rate of CNTs based on CVD technique is investigated by using a numerical model based on finite volume method. Inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. In thi...

متن کامل

Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate

Chemical Vapor Deposition (CVD) is one of the most important methods for producing Carbon Nanotubes (CNTs). In this research, a numerical model, based on finite volume method, is investigated. The applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. Using this model, the growth rate and thickness uniformity of produced CNTs,...

متن کامل

Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate

Chemical Vapor Deposition (CVD) is one of the most important methods for producing Carbon Nanotubes (CNTs). In this research, a numerical model, based on finite volume method, is investigated. The applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. Using this model, the growth rate and thickness uniformity of produced CNTs,...

متن کامل

numerical study of furnace temperature and inlet hydrocarbon concentration effect on carbon nanotube growth rate

chemical vapor deposition (cvd) is one of the most important methods for producing carbon nanotubes (cnts). in this research, a numerical model, based on finite volume method, is investigated. the applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. using this model, the growth rate and thickness uniformity of produced cnts,...

متن کامل

Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

The growth rate and uniformity of Carbon Nano Tubes (CNTs) based on Chemical Vapor Deposition (CVD) technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon...

متن کامل

numerical analysis of inlet gas-mixture flow rate effects on carbon nanotube growth rate

the growth rate and uniformity of carbon nano tubes (cnts) based on chemical vapor deposition (cvd) technique is investigated by using a numerical model. in this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal cvd reactor at atmospheric pressure. based on the gas phase and surface reactions, released carbon...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transport phenomena in nano and micro scales

ناشر: university of sistan and baluchestan, iranian society of mechanical engineers

ISSN 2322-3634

دوره 2

شماره 1 2014

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023